Approximating π (2007) A Sound Installation

Construction Method

Point of departure: the converging series $\pi = 4(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} \cdots)$

Each convergence gets a time window of 5040 samples (twice the lowest common multiple of the numbers 1-10), in which ten square wave partials of frequencies $8^{3}/_{n}$ Hz and amplitude 2^{d}_{n} are set up, '8³/₄' deriving from the 5040 samples, 'n' being the partial number and 'd_n' the nth digit in the convergence's decimal representation; e.g. for '3.141592654', the ten partials' amplitudes are 2^{3} , 2^{1} , 2^{4} , 2^{1} , 2^{5} , 2^{9} etc., thereafter rescaled by the arbitrary sawtooth-spectral factor $2\pi/n$, where 'n' is still the partial number. The convergences make the digits stabilize from left to right to a value approaching π , the resultant timbre moving from turbulence to constancy over $4 \times 10^{9} \times 5040 = 20.16 \times 10^{12}$ samples or $\sim 14^{1/2}$ years. The installation can be pitch-shifted (by sample-dropping) and/or time-truncated. Here the sixteen sound channels are transposed from $8^{3}/_{4}$ Hz to frequencies ranging from 9 to 402 times higher (according to the expression [9 x $\pi^{(1+1/2+1/3+\cdots+1/2)}]$, where χ is the channel number plus one); the duration is truncated to a millionth of the total, i.e. 7' $37^{1}/_{7}$ ', the highest transposition thereby reaching the 1,608,000th approximation of π , where the first six digits are already stable.